
-1-

Image and Volume Registration with AFNI

• Goal: bring images collected with different methods and at different times into spatial
alignment

• Facilitates comparison of data on a voxel-by-voxel basis
 Functional time series data will be less contaminated by artifacts due to subject

movement
 Can compare results across scanning sessions once images are properly registered
 Can put volumes in standard space such as the stereotaxic Talairach-Tournoux

coordinates
• Most (all?) image registration methods now in use do pair-wise alignment:

 Given a base image J(x) and target (or source) image I(x), find a geometrical
transformation T[x] so that I(T[x]) ≈ J(x)

 T[x] will depend on some parameters
➥ Goal is to find the parameters that make the transformed I a ‘best fit’ to J

 To register an entire time series, each volume In(x) is aligned to J(x) with its own
transformation Tn[x], for n = 0, 1, …
➥ Result is time series In(Tn[x]) for n=0, 1, …
➥ User must choose base image J(x)

-2-

• Most image registration methods make 3 algorithmic choices:
 How to measure mismatch E (for error) between I(T[x]) and J(x)?

➥ Or … How to measure goodness of fit between I(T[x]) and J(x)?
➭ E(parameters) ≡ –Goodness(parameters)

 How to adjust parameters of T[x] to minimize E?
 How to interpolate I(T[x]) to the J(x) grid?

➥ So can compare voxel intensities directly
• The input volume is transformed by the optimal T[x] and a record of the transform is kept in

the header of the output.
• Finding the transform to minimize E is the bulk of the registration work. Applying the

transform is easy and is done on the fly in many cases.
• Next we cover various aspects of registration that are closely related:

 Within Modality Registration
➥ T1 subj1 to T1 subj 2
➥ EPI timeseries to its ith volume.

 Cross Modality Registration
➥ T1 subj1 to EPI subj 1

 Registration to Standard Spaces (such as Talairach and Tournoux Atlas)
➥ T1 to T1 atlas
➥ EPI to EPI atlas

-3-

• AFNI 2dImReg, 3dvolreg and 3dWarpDrive programs match images by
grayscale (intensity) values
 E = (weighted) sum of squares differences = Σx w(x) · {I(T[x]) - J(x)}2

➥ Only useful for registering ‘like images’:
➭ Good for SPGRSPGR, EPIEPI, but notnot good for SPGREPI

 Parameters in T[x] are adjusted by “gradient descent”
➥ Fast, but customized for the least squares E

 Several interpolation methods are available:
➥ Default method is Fourier interpolation
➥ Polynomials of order 1, 3, 5, 7 (linear, cubic, quintic, and heptic)

 3dvolreg is designed to run VERY fast for EPIEPI registration with small
movements — good for FMRI purposes but restricted to 6-parameter rigid-
body transformations.

 3dWarpDrive is slower, but it allows for up to 12 parameters affine
transformation. This corrects for scaling and shearing differences in addition
to the rigid body transformations.

Within Modality Registration

-4-

• AFNI program 2dImReg is for aligning 2D slices
 T[x] has 3 parameters for each slice in volume:

➥ Shift along x-, y-axes; Rotation about z-axis
➥ No out of slice plane shifts or rotations!

 Useful for sagittal EPI scans where dominant subject movement is ‘nodding’ motion
that may be faster than TR

 It is possible and sometimes even useful to run 2dImReg to clean up sagittal nodding
motion, followed by 3dvolreg to deal with out-of-slice motion

• AFNI program 3dvolreg is for aligning 3D volumes by rigid movements
 T[x] has 6 parameters:

➥ Shifts along x-, y-, and z-axes; Rotations about x-, y-, and z-axes
 Generically useful for intra- and inter-session alignment
 Motions that occur within a single TR (2-3 s) cannot be corrected this way, since

method assumes rigid movement of the entire volume
• AFNI program 3dWarpDrive is for aligning 3D volumes by affine transformations

 T[x] has up to 12 parameters:
➥ Same as 3dvolreg plus 3 Scales and 3 Shears along x-, y-, and z-axes

 Generically useful for intra- and inter-session alignment
 Generically useful for intra- and inter-subject alignment

• Hybrid ‘slice-into-volume’ registration (We do not have a program to do this):
 Put each separate 2D image slice into the target volume with its own 6 movement

parameters (3 out-of-plane as well as 3 in-plane)
 Has been attempted, but the results are not much better than volume registration;

method often fails on slices near edge of brain

-5-

• Intra-session registration example:
3dvolreg -base 4 -heptic -zpad 4 \

 -prefix fred1_epi_vr \
 -1Dfile fred1_vr_dfile.1D \
 fred1_epi+orig

 -base 4 ⇒ Selects sub-brick #4 of dataset fred1_epi+orig as base image J(x)
 -heptic ⇒ Use 7th order polynomial interpolation (my personal favorite)
 -zpad 4 ⇒ Pad each target image, I(x), with layers of zero voxels 4 deep on each

face prior to shift/rotation, then strip them off afterwards (before output)
➥ Zero padding is particularly desirable for -Fourier interpolation
➥ Is also good to use for polynomial methods, since if there are large rotations,

some data may get ‘lost’ when no zero padding if used (due to the 4-way shift
algorithm used for very fast rotation of 3D volume data)

 -prefix fred1_epi_vr ⇒ Save output dataset into a new dataset with the
given prefix name (e.g., fred1_epi_vr+orig)

 -1Dfile fred1_vr_dfile.1D ⇒ Save estimated movement parameters into a
1D (i.e., text) file with the given name
➥ Movement parameters can be plotted with command
1dplot -volreg -dx 5 -xlabel Time fred1_vr_dfile.1D

Input dataset name

-6-
 Can now register second dataset from same session:
3dvolreg -base ‘fred1_epi+orig[4]’ -heptic -zpad 4 \

 -prefix fred2_epi_vr -1Dfile fred2_vr_dfile.1D \
 fred2_epi+orig

➥ Note base is from different dataset (fred1_epi+orig) than input
(fred2_epi+orig)
➭ Aligning all EPI volumes from session to EPI closest in time to SPGR

• 1dplot -volreg -dx 5 -xlabel Time fred2_vr_dfile.1D

➥ Note motion peaks at time ≈ 160s: subject jerked head up at that time

-7-

 Examination of time series fred2_epi+orig and fred2_epi_vr_+orig
shows that head movement up and down happened within about 1 TR
interval
➥ Assumption of rigid motion of 3D volumes is not good for this case
➥ Can do 2D slice-wise registration with command
2dImReg -input fred2_epi+orig \
 -basefile fred1_epi+orig \
 -base 4 -prefix fred2_epi_2Dreg

 Graphs of a single voxel time series near
the edge of the brain:
➥ Top = slice-wise alignment
➥ Middle = volume-wise adjustment
➥ Bottom = no alignment

 For this example, 2dImReg appears to
produce better results. This is because
most of the motion is ‘head nodding’ and
the acquisition is sagittal

 You should also use AFNI to scroll through
the images (using the Index control)
during the period of pronounced
movement
 Helps see if registration fixed problems

fred1_epi registered
with 2dImReg

fred1_epi registered
with 3dvolreg

fred1_epi unregistered

-8-

• Intra-subject, inter-session registration (for multi-day studies on same subject)
 Longitudinal or learning studies; re-use of cortical surface models
 Transformation between sessions is calculated by registering high-resolution

anatomicals from each session

➥ to3d defines defines
relationship between EPI
and SPGR in each session

➥ 3dvolreg computes
relationship between
sessions

➥ So can transform EPI from
session 2 to orientation of
session 1

 Issues in inter-session registration:
➥ Subject’s head will be positioned differently (in orientation and location)

➭ xyz-coordinates and anatomy don’t correspond
➥ Anatomical coverage of EPI slices will differ between sessions
➥ Geometrical relation between EPI and SPGR differs between session
➥ Slice thickness may vary between sessions (try not to do this, OK?)

No longer discussed here, see appendix A if interested

-9-

Real-Time 3D Image Registration
• The image alignment method using in 3dvolreg is also built into the

AFNI real-time image acquisition plugin
 Invoke by command afni -rt
 Then use Define Datamode → Plugins → RT Options

to control the operation of real-time (RT) image acquisition
• Images (2D or 3D arrays of numbers) can be sent into AFNI through a

TCP/IP socket
 See the program rtfeedme.c for sample of how to connect to

AFNI and send the data
➥ Also see file README.realtime for lots of details

 2D images will be assembled into 3D volumes = AFNI sub-bricks
• Real-time plugin can also do 3D registration when each 3D volume is

finished, and graph the movement parameters in real-time
 Useful for seeing if the subject in the scanner is moving his head too

much
➥ If you see too much movement, telling the subject will usually

help

-10-

• Realtime motion correction can easily be setup if DICOM images are made available on
disk as the scanner is running.

• The script demo.realtime present in the AFNI_data1/EPI_manyruns directory
demonstrates the usage:

#!/bin/tcsh

demo real-time data acquisition and motion detection with afni

use environment variables in lieu of running the RT Options plugin
setenv AFNI_REALTIME_Registration 3D:_realtime
setenv AFNI_REALTIME_Graph Realtime

if (! -d afni) mkdir afni
cd afni

afni -rt &

sleep 5

cd ..
echo ready to run Dimon
echo -n press enter to proceed...
set stuff = $<

Dimon -rt -use_imon -start_dir 001 -pause 200

-11-

• Screen capture from
example of real-time image
acquisition and registration

• Images and time series
graphs can be viewed as
data comes in

• Graphs of movement
parameters

-12-

Cross Modality Registration
• 3dAllineate can be used to align images from different methods

 For example, to align EPI data to SPGR / MPRAGE:
➥ Run 3dSkullStrip on the SPGR dataset so that it will be more like the

EPI dataset (which will have the skull fat suppressed)
➥ Use 3dAllineate to align the EPI volume(s) to the skull-stripped SPGR

volume
➥ Program works well if the EPI volume covers most of the brain

 Allows more general spatial transformations
➥ At present, 12 parameter affine: T[x] = Ax+b

 Uses a more general-purpose optimization library than gradient descent
➥ The NEWUOA package from Michael Powell at Oxford
➥ Less efficient than a customized gradient descent formulation

➭ But can be used in more situations
➭ And is easier to put in the computer program, since there is no need

to compute the derivatives of the cost function E

-13-

• 3dAllineate has several different “cost” functions (E) available
 leastsq = Least Squares (3dvolreg, 3dWarpDrive)
 mutualinfo = Mutual Information
 norm_mutualinfo = Normalized Mutual Information
 hellinger = Hellinger Metric [the defaultdefault cost function]
 corrratio_mul= Correlation ratio (symmetrized by multiplication)
 corratio_add = Correlation ratio (symmetrized by addition)
 corratio_uns = Correlation ratio (unsymmetric)

• All cost functions, except “leastsq ”, are based on the joint histogram between
images I(T[x]) and J(x)
 The goal is to make I(T[x]) “predictable” as possible given J(x), as the

parameters that define T[x] are varied
 The different cost functions use different ideas of “predictable”
 Perfect predictability = knowing value of J, can calculate value of I exactly

➥ Least squares: I = α⋅J+β for some constants α and β
➥ Joint histogram of I and J is “simple” in the idealized case of perfect

predictability

-14-

• Histogram cartoons:

J

I

J

I

J

I

• J not useful in
predicting I

• I can be accurately
predicted from J with
a linear formula:
 -leastsq is OK

• I can be accurately
predicted from J, but
nonlinearly:
 -leastsq is BAD

-15-

• Actual histograms from a registration example
 J(x) = 3dSkullStrip-ed MPRAGE I(x) = EPI volume

J

I

• Before alignment

J

I

• After alignment
(using -mutualinfo)

-16-

• grayscale underlay = J(x) = 3dSkullStrip-ed MPRAGE
• color overlay = I(x) = EPI volume

• Before alignment • After alignment
(using -mutualinfo)

-17-

• Other 3dAllineate capabilities:
 Save transformation parameters with option -1Dfile in one program run

➥ Re-use them in a second program run on another input dataset with option -
1Dapply

 Interpolation: linear (polynomial order = 1) during alignment
➥ To produce output dataset: polynomials of order 1, 3, or 5

• Algorithm details:
 Initial alignment starting with many sets of transformation parameters, using only

a limited number of points from smoothed images
 The best (smallest E) sets of parameters are further refined using more points

from the images and less blurring
 This continues until the final stage, where many points from the images and no

blurring is used
• So why not 3dAllineate all the time?

 Alignment with cross-modal cost functions do not always converge as well as
those based on least squares.
➥ See Appendix B for more info.
➥ Improvements are still being introduced

-18-

• The future for 3dAllineate:
 Allow alignment to use manually placed control points (on both images) and the

image data
➥ Will be useful for aligning highly distorted images or images with severe shading
➥ Current AFNI program 3dTagalign allows registration with control points only

 Nonlinear spatial transformations
➥ For correcting distortions of EPI (relative to MPRAGE or SPGR) due to magnetic

field inhomogeneity
➥ For improving inter-subject brain alignment (Talairach)

 Investigate the use of local computations of E (in a set of overlapping regions covering
the images) and using the sum of these local E’s as the cost function
➥ May be useful when relationship between I and J image intensities is spatially

dependent
➭ RF shading and/or Differing MRI contrasts

 Save warp parameters in dataset headers for re-use by 3dWarp

-19-

• The original purpose of AFNI (circa 1994 A.D.) was to perform the transformation of
datasets to Talairach-Tournoux (stereotaxic) coordinates

• The transformation can be manual, or automatic
• In manual mode, you must mark various

anatomical locations, defined in
Jean Talairach and Pierre Tournoux
“Co-Planar Stereotaxic Atlas of the Human Brain”
Thieme Medical Publishers, New York, 1988

 Marking is best done on a high-resolution T1-weighted structural MRI volume
• In automatic mode, you need to choose a template to which your data are

allineated. Different templates are made available with AFNI’s distribution. You
can also use your own templates.

• Transformation carries over to all other (follower) datasets in the same directory
 This is where the importance of getting the relative spatial placement of datasets

done correctly in to3d really matters
 You can then write follower datasets, typically functional or EPI timeseries, to disk

in Talairach coordinates
➥ Purpose: voxel-wise comparison with other subjects
➥ May want to blur volumes a little before comparisons, to allow for residual

anatomic variability: AFNI programs 3dmerge or 3dBlurToFWHM

Registration To Standard Spaces
Transforming Datasets to Talairach-Tournoux Coordinates

-20-

• Manual Transformation proceeds in two stages:
1. Alignment of AC-PC and I-S axes (to +acpc coordinates)
2. Scaling to Talairach-Tournoux Atlas brain size (to +tlrc coordinates)

• Stage 1: Alignment to +acpc coordinates:
 Anterior commissure (AC) and posterior commissure (PC) are aligned to be the

y-axis
 The longitudinal (inter-hemispheric or mid-sagittal) fissure is aligned to be the yz-

plane, thus defining the z-axis
 The axis perpendicular to these is the x-axis (right-left)
 Five markers that you must place using the [Define Markers] control panel:

AC superior edge = top middle of anterior commissure
AC posterior margin = rear middle of anterior commissure
PC inferior edge = bottom middle of posterior commissure
First mid-sag point = some point in the mid-sagittal plane
Another mid-sag point = some other point in the mid-sagittal plane

 This procedure tries to follow the Atlas as precisely as possible
➥ Even at the cost of confusion to the user (e.g., you)

-21-

Press this IN to create or change markers

Color of “primary”
(selected) marker

Color of “secondary”
(not selected) markers
Size of markers (pixels)
Size of gap in markers

Select which
marker you
are editing

Carry out transformation
to +acpc coordinates

Clear (unset)
primary marker

Set primary marker to
current focus location

Perform “quality” check on
markers (after all 5 are set)

Click Define
Markers to

open the
“markers”

panel

-22-• Stage 2: Scaling to Talairach-Tournoux (+tlrc)
coordinates:
 Once the AC-PC landmarks are set and we are in ACPC view, we now

stretch/shrink the brain to fit the Talairach-Tournoux Atlas brain size (sample
TT Atlas pages shown below, just for fun)

79 mmPC to most posterior
23 mmAC to PC
70 mmMost anterior to AC

74 mmAC to most superior
42 mmMost inferior to AC

68 mmAC to left (or right)

172mmLength of cerebrum

116mmHeight of cerebrum

136mmWidth of cerebrum

-23-

• Selecting the Talairach-Tournoux markers for the bounding box:

 There are 12 sub-regions to be scaled (3 A-P x 2 I-S x 2 L-R)
 To enable this, the transformed +acpc dataset gets its own set of markers

➥ Click on the [AC-PC Aligned] button to view our volume in ac-pc coordinates
➥ Select the [Define Markers] control panel

 A new set of six Talairach markers will appear and the user now sets the bounding box markers
(see Appendix C for details):

Talairach markers
appear only when the
AC-PC view is
highlighted

 Once all the markers are set, and the quality tests passed. Pressing [Transform Data] will
write new header containing the Talairach transformations (see Appendix C for details)
➥ Recall: With AFNI, spatial transformations are stored in the header of the output

-24-

• Listen up folks, IMPORTANT NOTE:
 Have you ever opened up the [Define Markers] panel, only to find the AC-PC markers
missing , like this:

 There are a few reasons why this happens, but usually it’s because you’ve made a copy
of a dataset, and the AC-PC marker tags weren’t created in the copy, resulting in the
above dilemma.
➥ In other cases, this occurs when afni is launched without any datasets in the

directory from which it was launched (oopsy, your mistake).
 If you do indeed have an AFNI dataset in your directory, but the markers are missing

and you want them back, run 3drefit with the -markers options to create an empty
set of AC-PC markers. Problem solved!

3drefit -markers <name of dataset>

Gasp! Where
did they go?

Detailed example for manual transformation is now in appendix C

-25- Automatic Talairach Transformation with @auto_tlrc
• Is manual selection of AC-PC and Talairach markers bringing you down? You can now

perform a TLRC transform automatically using an AFNI script called @auto_tlrc.
 Differences from Manual Transformation:

➥ Instead of setting ac-pc landmarks and volume boundaries by hand, the anatomical
volume is warped (using 12-parameter affine transform) to a template volume in
TLRC space.

➥ Anterior Commisure (AC) center no longer at 0,0,0 and size of brain box is that of
the template you use.
➭ For various reasons, some good and some bad, templates adopted by the

neuroimaging community are not all of the same size. Be mindful when using
various atlases or comparing standard-space coordinates.

➥ You, the user, can choose from various templates for reference but be consistent in
your group analysis.

➥ Easy, automatic. Just check final results to make sure nothing went seriously awry.
AFNI is perfect but your data is not.

-26-

 Templates in @auto_tlrc that the user can choose from:
➥ TT_N27+tlrc:

➭ AKA “Colin brain”. One subject (Colin) scanned 27 times and averaged.
(www.loni.ucla.edu, www.bic.mni.mcgill.ca)

➭ Has a full set of FreeSurfer (surfer.nmr.mgh.harvard.edu) surface models that
can be used in SUMA (link).

➭ Is the template for cytoarchitectonic atlases
(www.fz-juelich.de/ime/spm_anatomy_toolbox)

• For improved alignment with cytoarchitectonic atlases, I recommend using the TT_N27
template because the atlases were created for it. In the future, we might provide
atlases registered to other templates.

➥ TT_icbm452+tlrc:
➭ International Consortium for Brain Mapping template, average volume of

452 normal brains. (www.loni.ucla.edu, www.bic.mni.mcgill.ca)
➥ TT_avg152T1+tlrc:

➭ Montreal Neurological Institute (www.bic.mni.mcgill.ca) template, average
volume of 152 normal brains.

➥ TT_EPI+tlrc:
➭ EPI template from spm2, masked as TT_avg152T1. TT_avg152 and TT_EPI

volumes are based on those in SPM's distribution. (www.fil.ion.ucl.ac.uk/spm/)

-27- Steps performed by @auto_tlrc

• For warping a volume to a template (Usage mode 1):
1. Pad the input data set to avoid clipping errors from shifts and

rotations
2. Strip skull (if needed)
3. Resample to resolution and size of TLRC template
4. Perform 12-parameter affine registration using 3dWarpDrive

Many more steps are performed in actuality, to fix up various
pesky little artifacts. Read the script if you are interested.

 Typically this steps involves a high-res anatomical to an anatomical
template
➥ Example: @auto_tlrc -base TT_N27+tlrc. -input anat+orig. -suffix NONE

 One could also warp an EPI volume to an EPI template.
➥ If you are using an EPI time series as input. You must choose one

sub-brick to input. The script will make a copy of that sub-brick and
will create a warped version of that copy.

-28- Applying a transform to follower datasets
• Say we have a collection of datasets that are in alignment with each other. One

of these datasets is aligned to a template and the same transform is now to be
applied to the other follower datasets

• For Talairach transforms there are a few methods:
 Method 1: Manually using the AFNI interface (see Appendix C)
 Method 2: With program adwarp

adwarp -apar anat+tlrc -dpar func+orig

➥ The result will be: func+tlrc.HEAD and func+tlrc.BRIK

 Method 3: With @auto_tlrc script in mode 2
➥ ONLY when -apar dataset was created by @auto_tlrc
➥ Otherwise, you can use adwarp

• Why bother saving transformed datasets to disk anyway?
 Datasets without .BRIK files are of limited use:

➥ You can’t display 2D slice images from such a dataset
➥ You can’t use such datasets to graph time series, do volume rendering,

compute statistics, run any command line analysis program, run any plugin…
➭ If you plan on doing any of the above to a dataset, it’s best to have both a
.HEAD and .BRIK files for that dataset

-29- @auto_tlrc Example

• Transforming the high-resolution anatomical:
 (If you are also trying the manual transform on workshop data, start

with a fresh directory with no +tlrc datasets)
@auto_tlrc \

-base TT_N27+tlrc \
-suffix NONE \
-input anat+orig

• Transforming the function (“follower datasets”), setting the resolution at 2
mm:

@auto_tlrc \
-apar anat+tlrc \
-input func_slim+orig \
-suffix NONE \
-dxyz 2

• You could also use the icbm452 or the mni’s avg152T1 template instead
of N27 or any other template you like (see @auto_tlrc -help for a few
good words on templates)

Output:
anat+tlrc

Output:
func_slim+tlrc

-30- @auto_tlrc Results are Comparable to Manual TLRC:

Original

@auto_tlrc

Manual

-31- Manual TLRC vs. @auto_tlrc (e.g., N27 template)

Expect some differences between
manual TLRC and @auto_tlrc:
The @auto_tlrc template is the
brain of a different person after all.

-32-

Difference Between anat+tlrc (manual) and TT_N27+tlrc template

Difference between TT_icbm452+tlrc and TT_N27+tlrc templates

-33- Atlas/Template Spaces Differ In Size

MNI is larger than TLRC space.

-34- Atlas/Template Spaces Differ In Origin

TLRC
MNI
MNI-Anat.

-35- From Space To Space

• Going between TLRC and MNI:
 Approximate equation

➥ used by whereami and adwarp
 Manual TLRC transformation of MNI template to TLRC space

➥ used by whereami (as precursor to MNI Anat.), based on N27 template
 Automated registration of a any dataset from one space to the other

• Going between MNI and MNI Anatomical (Eickhoff et al. Neuroimage 25, 2005):
 MNI + (0, 4, 5) = MNI Anat. (in RAI coordinate system)

• Going between TLRC and MNI Anatomical (as practiced in whereami):
 Go from TLRC to MNI via manual xform of N27 template
 Add (0, 4, 5)

TLRC
MNI
MNI-Anat.

-36- Atlases/Templates Use Different Coord. Systems

• There are 48 manners to specify XYZ coordinates
• Two most common are RAI/DICOM and LPI/SPM
• RAI means

 X is Right-to-Left (from negative-to-positive)
 Y is Anterior-to-Posterior (from negative-to-positive)
 Z is Inferior-to-Superior (from negative-to-positive)

• LPI means
 X is Left-to-Right (from negative-to-positive)
 Y is Posterior-to-Inferior (from negative-to-positive)
 Z is Inferior-to-Superior (from negative-to-positive)

• To go from RAI to LPI just flip the sign of the X and Y coordinates
 Voxel -12, 24, 16 in RAI is the same as 12, -24, 16 in LPI
 Voxel above would be in the Right, Posterior, Superior octant of the brain

• AFNI allows for all coordinate systems but default is RAI
 Can use environment variable AFNI_ORIENT to change the default for

AFNI AND other programs.
 See whereami -help for more details.

-37- Atlases Distributed With AFNI
TT_Daemon

• TT_Daemon : Created by tracing Talairach and Tournoux brain illustrations.
 Generously contributed by Jack Lancaster and Peter Fox of RIC UTHSCSA)

-38- Atlases Distributed With AFNI
Anatomy Toolbox: Prob. Maps, Max. Prob. Maps

• CA_N27_MPM, CA_N27_ML, CA_N27_PM: Anatomy Toolbox's atlases with
some created from cytoarchitectonic studies of 10 human post-mortem brains
 Generously contributed by Simon Eickhoff, Katrin Amunts and Karl Zilles of

IME, Julich, Germany

-39- Atlases Distributed With AFNI:
Anatomy Toolbox: MacroLabels

• CA_N27_MPM, CA_N27_ML, CA_N27_PM: Anatomy Toolbox's atlases with
some created from cytoarchitectonic studies of 10 human post-mortem brains
 Generously contributed by Simon Eickhoff, Katrin Amunts and Karl Zilles of

IME, Julich, Germany

-40-
• Some fun and useful things to do with +tlrc datasets are on the 2D slice viewer

Buttton-3 pop-up menu:

Lets you jump to centroid of regions in the TT_Daemon Atlas (works in +orig too)

 [Talairach to]

-41-

 [Where am I?]

Shows you where you
are in various atlases.
(works in +orig too, if
you have a TT
transformed parent)

For atlas installation,
and much much more,
see help in command
line version:
whereami -help

-42-

 [Atlas colors]

Lets you display color overlays for various TT_Daeomon Atlas-defined regions,
using the Define Function See TT_Daemon Atlas Regions control (works only in
+tlrc)

For the moment, atlas colors work for TT_Daemon atlas only. There are ways to
display other atlases. See whereami -help.

-43-

Appendix A

Inter-subject, inter-session registration

-44-

• Intra-subject, inter-session registration (for multi-day studies on same subject)
 Longitudinal or learning studies; re-use of cortical surface models
 Transformation between sessions is calculated by registering high-resolution

anatomicals from each session

➥ to3d defines defines
relationship between EPI
and SPGR in each session

➥ 3dvolreg computes
relationship between
sessions

➥ So can transform EPI from
session 2 to orientation of
session 1

 Issues in inter-session registration:
➥ Subject’s head will be positioned differently (in orientation and location)

➭ xyz-coordinates and anatomy don’t correspond
➥ Anatomical coverage of EPI slices will differ between sessions
➥ Geometrical relation between EPI and SPGR differs between session
➥ Slice thickness may vary between sessions (try not to do this, OK?)

-45-

• Anatomical coverage differs

 At acquisition:
 Day 2 is rotated

relative to Day 1

 After rotation to
same orientation,
then clipping to
Day 2 xyz-grid

-46-

 Another problem: rotation
occurs around center of
individual datasets

-47-

 Solutions to these problems:
➥ Add appropriate shift to E2 on top of rotation

➭ Allow for xyz shifts between days (E1-E2), and center shifts
between EPI and SPGR (E1-S1 and E2-S2)

➥ Pad EPI datasets with extra slices of zeros so that aligned datasets
can fully contain all data from all sessions

➥ Zero padding of a dataset can be done in to3d (at dataset creation
time), or later using 3dZeropad

➥ 3dvolreg and 3drotate can zero pad to make the output match a
“grid parent” dataset in size and location

-48-

 Recipe for intra-subject S2-to-S1 transformation:
1. Compute S2-to-S1 transformation:

3dvolreg -twopass -zpad 4 -base S1+orig \
 -prefix S2reg S2+orig

➥ Rotation/shift parameters are saved in S2reg+orig.HEAD
2. If not done before (e.g., in to3d), zero pad E1 datasets:

3dZeropad -z 4 -prefix E1pad E1+orig

3. Register E1 datasets within the session:
3dvolreg -base ‘E1pad+orig[4]’ -prefix E1reg \

 E1pad+orig

4. Register E2 datasets within the session, at the same time executing
larger rotation/shift to session 1 coordinates that were saved in
S2reg+orig.HEAD:
3dvolreg -base ‘E2+orig[4]’ \
 -rotparent S2reg+orig \
 -gridparent E1reg+orig \
 -prefix E2reg E2reg+orig

➥ -rotparent tells where the inter-session transformation comes from
➥ -gridparent defines the output grid location/size of new dataset

➭ Output dataset will be shifted and zero padded as needed to lie on
top of E1reg+orig

• These options put the aligned
• E2reg into the same coordinates
 and grid as E1reg

• -twopass allows
 for larger motions

-49-

 Recipe above does not address problem of having different slice thickness in
datasets of the same type (EPI and/or SPGR) in different sessions
➥ Best solution: pay attention when you are scanning, and always use the

same slice thickness for the same type of image
➥ OK solution: use 3dZregrid to linearly interpolate datasets to a new slice

thickness
 Recipe above does not address issues of slice-dependent time offsets stored

in data header from to3d (e.g., ‘alt+z’)
➥ After interpolation to a rotated grid, voxel values can no longer be said to

come from a particular time offset, since data from different slices will have
been combined

➥ Before doing this spatial interpolation, it makes sense to time-shift dataset
to a common temporal origin

➥ Time shifting can be done with program 3dTshift
➭ Or by using the -tshift option in 3dvolreg, which first does the

time shift to a common temporal origin, then does the 3D spatial
registration

• Further reading at the AFNI web site
 File README.registration (plain text) has more detailed instructions and

explanations about usage of 3dvolreg
 File regnotes.pdf has some background information on issues and methods

used in FMRI registration packages

-50-

Appendix B

3dAllineate for the curious

-51-

3dAllineate3dAllineate::
More than you want toMore than you want to

knowknow

-52- Algorithmic Features
• Uses Powell’s NEWUOA software for minimization of general cost function
• Lengthy search for initial transform parameters if two passes of registration are turned

on [which is the default]
 Random and grid search through hundreds of parameter sets for 15 good (low cost)

parameter sets
 Optimize a little bit from each ‘good’ set, using blurred images

➥ Blurring the images means that small details won’t prevent a match
 Keep best 4 of these parameter sets, and optimize them some more [keeping 4 sets

is the default for -twobest option]
➥ Amount of blurring is reduced in several stages, followed by re-optimization of

the transformation parameter sets on these less blurred images
➥ -twofirst does this for first sub-brick, then uses the best parameter sets

from the first sub-brick as the starting point for the rest of the sub-bricks [the
default]

 Use best 1 of these parameter sets as starting point for fine (un-blurred)
parameter optimization
➥ The slowest part of the program

-53-

Algorithmic Features
• Goal is to find parameter set w such that E[J(x) , I(T(x,w))] is small

 T(x,w) = spatial transformation of x given w
 J() = base image, I() = target image, E[] = cost function

• For each x in base image space, compute T(x,w) and then interpolate I() at those
points
 For speed, program doesn’t use all points in J(), just a scattered collection of

them, selected from an automatically generated mask
➥ Mask can be turned off with -noauto option
➥ At early stages, only a small collection of points [default=23456] is used when

computing E[]
➥ At later stages, more points are used, for higher accuracy

➭ Recall that each stage is less blurred than the previous stages
 Large fraction of CPU time is spent in interpolation of image I() over the collection

of points used to compute E[]

-54-

Cost Functions
• Except for least squares (actually, ls minimizes E = 1.0 – Pearson correlation coefficient), all

cost functions are computed from 2D joint histogram of J(x) and I(T(x,w))
 Start and final histograms can be saved using hidden option -savehist

Before After

Base image

Source
image

Source image
= rotated copy
of Base image

-55-

Histogram Based Cost Functions
• Goal is to make 2D histogram become ‘simple’ in some sense, as a measurement of
‘predictability’ between J(x) and I(T(x,w))

• Entropy H() of a histogram (finite number of bins):
 {pi} = probabilities of index i occuring
 H({pi}) = –Σi pi log2(pi) > 0
 H({pi}) = Number of bits needed to encode a single value randomly drawn from the

probabilities {pi}
 Smaller entropy H means the values are ‘simpler’ to encode

➥ Largest H is for uniform histogram (all pi equal)

-56- Mutual Information
• Entropy of 2D histogram

 H({rij}) = –Sij rij log2(rij)
 Number of bits needed to encode value pairs (i,j)

• Mutual Information between two distributions
 Marginal (1D) histograms {pi} and {qj}
 MI = H({pi}) + H({qj}) - H({rij})
 Number of bits required to encode 2 values separately minus number of bits

required to encode them together (as a pair)
 If 2D histogram is independent (rij= pi×qj) then MI = 0 = no gain from joint encoding

• 3dAllineate minimizes E[J,I] = –MI(J,I) with -cost mi

-57-

Normalized MI
• NMI = H({rij}) ⁄ [H({pi}) + H({qj})]

 Ratio of number of bits to encode value pair divided by number of bits to encode two
values separately

 Minimize NMI with -cost nmi
• Some say NMI is more robust for registration than MI, since MI can be large when there

is no overlap between the two images

NO
overlap

100%
overlap

BAD
overlap

-58-

Hellinger Metric
• MI can be thought of as measuring a ‘distance’ between two 2D histograms: the

joint distribution {rij} and the product distribution {pi×qj}
 MI is not a ‘true’ distance: it doesn’t satisfy triangle inequality d(a,b)+d(b,c) >

d(a,c)
• Hellinger metric is a true distance in distribution “space”:

 HM = Σij [√rij – √(pi×qj)]2

 3dAllineate minimizes –HM with -cost hel
 This is the default cost function

a

c

b

-59-

Correlation Ratio
• Given 2 (non-independent) random variables x and y

 Exp[y|x] is the expected value (mean) of y for a fixed
value of x
➥ Exp[a|b] ≡ Average value of ‘a’, given value of ‘b’

 Var(y|x) is the variance of y when x is fixed = amount
of uncertainty about value of y when we know x
➥ v(x) ≡ Var(y|x) is a function of x only

x

y

• CR(x,y) ≡ 1 – Exp[v(x)] ⁄ Var(y)
• Relative reduction in uncertainty about value of y when x is known; large CR means
Exp[y|x] is a good prediction of the value of y given the value of x

• Does not say that Exp[x|y] is a good prediction of the x given y
• CR(x,y) is a generalization of the Pearson correlation coefficient, which assumes that
Exp[y|x] = α⋅x+β

-60-

3dAllineate’s Symmetrical CR
• First attempt to use CR in 3dAllineate didn’t give good results
• Note asymmetry: CR(x,y) ≠ CR(y,x)
• 3dAllineate now offers two different symmetric CR cost functions:

 Compute both unsymmetric CR(x,y) and CR(y,x), then combine by
Multiplying or Adding:

 CRm(x,y) = 1 – [Exp(v(x))⋅Exp(v(y))] ⁄ [Var(y) ⋅ Var(x)]
 = CR(x,y) + CR(y,x) – CR(x,y) ⋅ CR(y,x)

 CRa(x,y) = 1 – 1/2 [Exp(v(x)) ⁄ Var(y)] – 1/2 [Exp(v(y)) ⁄ Var(x)]
 = [CR(x,y) + CR(y,x)] ⁄ 2

 These work better than CR(J,I) in my test problems
• If Exp[y|x] can be used to predict y and/or Exp[x|y] can be used to predict x,

then crM(x,y) will be large (close to 1)
• 3dAllineate minimizes 1 – CRm(J,I) with option -cost crM
• 3dAllineate minimizes 1 – CRa(J,I) with option -cost crA
• 3dAllineate minimizes 1 – CR(J,I) with option -cost crU

-61-

Test: Monkey EPI - Anat

6 DOF
CRm

6 DOF
NMI

-62-

6 DOF
HEL

6 DOF
MI

Test: Monkey EPI - Anat

-63-

11 DOF
CRm

11 DOF
NMI

Test: Monkey EPI - Anat

-64-

11 DOF
HEL

11 DOF
MI

Test: Monkey EPI - Anat

-65-

Appendix C

Talairach Transform from the days of yore

-66-

• Listen up folks, IMPORTANT NOTE:
 Have you ever opened up the [Define Markers] panel, only to find the AC-PC markers
missing , like this:

 There are a few reasons why this happens, but usually it’s because you’ve made a copy
of a dataset, and the AC-PC marker tags weren’t created in the copy, resulting in the
above dilemma.
➥ In other cases, this occurs when afni is launched without any datasets in the

directory from which it was launched (oopsy, your mistake).
 If you do indeed have an AFNI dataset in your directory, but the markers are missing

and you want them back, run 3drefit with the -markers options to create an empty
set of AC-PC markers. Problem solved!

3drefit -markers <name of dataset>

Gasp! Where
did they go?

-67-
• Class Example - Selecting the ac-pc markers:

 cd AFNI_data1/demo_tlrc ⇒ Descend into the demo_tlrc/ subdirectory
 afni & ⇒ This command launches the AFNI program

➥ The “&” keeps the UNIX shell available in the background, so we can continue
typing in commands as needed, even if AFNI is running in the foreground

 Select dataset anat+orig from the [Switch Underlay] control panel

 Select the [Define Markers]control panel to view the 5 markers for
ac-pc alignment

 Click the [See Markers] button to view the markers on the brain
volume as you select them

 Click the [Allow edits] button in the ac-pc GUI to begin marker
selection

Press IN to view
markers on brain
volume

The AC-PC
markers
appear only
when the orig
view is
highlighted

-68-

 First goal is to mark top middle and rear middle of AC
➥ Sagittal: look for AC at bottom level of corpus callosum, below fornix
➥ Coronal: look for “mustache”; Axial: look for inter-hemispheric connection
➥ Get AC centered at focus of crosshairs (in Axial and Coronal)
➥ Move superior until AC disappears in Axial view; then inferior 1 pixel
➥ Press IN [AC superior edge] marker toggle, then [Set]
➥ Move focus back to middle of AC
➥ Move posterior until AC disappears in Coronal view; then anterior 1 pixel
➥ Press IN [AC posterior margin], then [Set]

-69-

 Second goal is to mark inferior edge of PC
➥ This is harder, since PC doesn’t show up well at 1 mm resolution
➥ Fortunately, PC is always at the top of the cerebral aqueduct, which does show

up well (at least, if CSF is properly suppressed by the MRI pulse sequence)

➥ Therefore, if you can’t see the PC, find mid-sagittal location just at top
of cerebral aqueduct and mark it as [PC inferior edge]

 Third goal is to mark two inter-hemispheric points (above corpus
callosum)
➥ The two points must be at least 2 cm apart
➥ The two planes AC-PC-#1 and AC-PC-#2 must be no more than 2o

apart

cerebral aqueduct

-70-

• AC-PC Markers Cheat Sheet
 The AC-PC markers may take some time for the novice to master, so in the interest of

time, we provide you with a little guide or “cheat sheet” to help you place markers on this
example volume:

 i j k to:
AC Superior Edge: 126 107 63
AC Posterior Margin: 127 108 63
PC Inferior Edge: 152 109 63
1st Mid-Sagittal Point: 110 59 60
2nd Mid-Sagittal Point: 172 63 60

AC-PC
markers

mid-sagittal
markers

-71-

 Once all 5 markers have been set, the [Quality?] Button is ready
➥ You can’t [Transform Data] until [Quality?] Check is passed
➥ In this case, quality check makes sure two planes from AC-PC line to mid-

sagittal points are within 2o

➭ Sample below shows a 2.43o deviation between planes ⇒ ERROR
message indicates we must move one of the points a little

➭ Sample below shows a deviation between planes at less than 2o. Quality
check is passed

• We can now save the marker locations into the dataset header

-72-
 Notes on positioning AC/PC markers:

➥ The structures dimensions are on the order of typical high-res images. Do not fret about a
matter such as:
➭ Q: Do I put the Sup. AC marker on the top voxel where I see still the the structure or on

the one above it?
• A: Either option is OK, just be consistent. The same goes for setting the bounding

box around the brain discussed ahead. Remember, intra-subject anatomical
variability is more than the 1 or 2 mm you are concerned about.

➥ Typically, all three markers fall in the same mid-saggital plane
 Why, oh why, two mid-saggital points?

➥ [Quality?] Contrary to our desires, no two hemispheres in their natural setting can be
perfectly separated by a mid-saggital plane. When you select a mid-saggital point, you are
defining a plane (with AC/PC points) that forms an acceptable separation between left and
right sides of the brain.

➥ To get a better approximation of the mid-saggital plane, AFNI insists on another mid-
saggital point and uses the average of the two planes. It also insists that these two planes
are not off from one another by more than 2o

 I am Quality! How do I escape the tyranny of the [Quality?] check?
➥ If you know what you're doing and want to elide the tests:

➭ Set AFNI_MARKERS_NOQUAL environment variable to YES
➭ This is a times needed when you are applying the transform to brains of children or

monkeys which differ markedly in size from mature human brains.

-73-

 When [Transform Data] is available, pressing it will close the
[Define Markers] panel, write marker locations into the dataset header,
and create the +acpc datasets that follow from this one
➥ The [AC-PC Aligned] coordinate system is now enabled in the main

AFNI controller window
➥ In the future, you could re-edit the markers, if desired, then re-transform the

dataset (but you wouldn’t make a mistake, would you?)
➥ If you don’t want to save edited markers to the dataset header, you must

quit AFNI without pressing [Transform Data] or [Define Markers]

 ls ⇒ The newly created ac-pc dataset, anat+acpc.HEAD, is located in our
demo_tlrc/ directory

 At this point, only the header file exists, which can be viewed when selecting
the [AC-PC Aligned] button
➥ more on how to create the accompanying .BRIK file later…

-74-

• Scaling to Talairach-Tournoux (+tlrc) coordinates:
 We now stretch/shrink the brain to fit the Talairach-Tournoux Atlas

brain size (sample TT Atlas pages shown below, just for fun)

79 mmPC to most posterior
23 mmAC to PC
70 mmMost anterior to AC

74 mmAC to most superior
42 mmMost inferior to AC

136
mm

Width of cerebrum68 mmAC to left (or right)

172
mm

Length of cerebrum

116
mm

Height of cerebrum

-75-

• Class example - Selecting the Talairach-Tournoux markers:
 There are 12 sub-regions to be scaled (3 A-P x 2 I-S x 2 L-R)
 To enable this, the transformed +acpc dataset gets its own set of markers

➥ Click on the [AC-PC Aligned] button to view our volume in ac-pc coordinates
➥ Select the [Define Markers] control panel

 A new set of six Talairach markers will appear:

The Talairach markers appear only
when the AC-PC view is highlighted

-76-

 Using the same methods as before (i.e., select marker toggle, move focus there, [Set]),
you must mark these extreme points of the cerebrum
➥ Using 2 or 3 image windows at a time is useful
➥ Hardest marker to select is [Most inferior point] in the temporal lobe, since it

is near other (non-brain) tissue:

➥ Once all 6 are set, press [Quality?] to see if the distances are reasonable
➭ Leave [Big Talairach Box?] Pressed IN
➭ Is a legacy from earliest (1994-6) days of AFNI, when 3D box size of +tlrc

datasets was 10 mm smaller in I-direction than the current default

Sagittal view:
most inferior
point

Axial view:
most inferior
point

-77-

 Once the quality check is passed, click on [Transform Data] to save the
+tlrc header

 ls ⇒ The newly created +tlrc dataset, anat+tlrc.HEAD, is located in our
demo_tlrc/ directory
➥ At this point, the following anatomical datasets should be found in our
demo_tlrc/ directory:

anat+orig.HEAD anat+orig.BRIK

anat+acpc.HEAD

anat+tlrc.HEAD

➥ In addition, the following functional dataset (which I -- the instructor --
created earlier) should be stored in the demo_tlrc/ directory:

func_slim+orig.HEAD func_slim+orig.BRIK

➭ Note that this functional dataset is in the +orig format (not +acpc or
+tlrc)

-78-

• Automatic creation of “follower datasets”:
 After the anatomical +orig dataset in a directory is resampled to +acpc and

+tlrc coordinates, all the other datasets in that directory will automatically get
transformed datasets as well
➥ These datasets are created automatically inside the interactive AFNI program,

and are not written (saved) to disk (i.e., only header info exists at this point)
➥ How followers are created (arrows show geometrical relationships):

anat+orig → anat+acpc → anat+tlrc
 ↑ ↓ ↓
func+orig func+acpc func+tlrc

➥ In the class example, func_slim+orig will automatically be “warped” to our
anat dataset’s ac-pc (anat+acpc) & Talairach (anat+tlrc) coordinates
➭ The result will be func_slim+acpc.HEAD and func_slim+tlrc.HEAD,

located internally in the AFNI program (i.e., you won’t see these files in the
demo_tlrc/ directory)
• To store these files in demo_tlrc/, they must be written to disk.

More on this later…

-79-

func_slim+orig “func_slim+acpc” “func_slim+tlrc”

Functional dataset warped to
anat underlay coordinates

 How does AFNI actually create these follower datsets?
➥ After [Transform Data] creates anat+acpc, other datasets in the same

directory are scanned
➭ AFNI defines the geometrical transformation (“warp”) from func_slim+orig

using the to3d-defined relationship between func_slim+orig and
anat+orig, AND the markers-defined relationship between anat+orig and
anat+acpc

• A similar process applies for warping func_slim+tlrc
➭ These warped functional datasets can be viewed in the AFNI interface:

 Next time you run AFNI, the followers will automatically be created internally again
when the program starts

-80-

 “Warp on demand” viewing of datasets:
➥ AFNI doesn’t actually resample all follower datasets to a grid in the re-aligned and re-

stretched coordinates
➭ This could take quite a long time if there are a lot of big 3D+time datasets

➥ Instead, the dataset slices are transformed (or warped) from +orig to +acpc or +tlrc
for viewing as needed (on demand)

➥ This can be controlled from the [Define Datamode] control panel:

AFNI titlebar shows warp on demand:

If possible, lets you view slices direct from dataset .BRIK
If possible, transforms slices from ‘parent’ directory
Interpolation mode used when transforming datasets
Grid spacing to interpolate with

Similar for functional datasets

Write transformed datasets to disk
Re-read: datasets from current session, all session, or 1D files
Read new: session directory, 1D file, dataset from Web address
Menus that had to go somewhere

{warp}[A]AFNI2.56b:AFNI_sample_05/afni/anat+tlrc

-81-

• Writing “follower datasets” to disk:
 Recall that when we created anat+acpc and anat+tlrc datasets by pressing

[Transform Data], only .HEAD files were written to disk for them
 In addition, our follower datasets func_slim+acpc and func_slim+tlrc are

not stored in our demo_tlrc/ directory. Currently, they can only be viewed in
the AFNI graphical interface

 Questions to ask:
1. How do we write our anat .BRIK files to disk?
2. How do we write our warped follower datasets to disk?

 To write a dataset to disk (whether it be an anat .BRIK file or a follower dataset),
use one of the [Define Datamode] ⇒ Write buttons:

ULay writes current underlay dataset to disk
OLay writes current overlay dataset to disk
Many writes multiple datasets in a directory to
disk

Creating follower data

-82-

• Class exmaple - Writing anat (Underlay) datasets to disk:
 You can use [Define Datamode] ⇒ Write ⇒ [ULay] to write the current

anatomical dataset .BRIK out at the current grid spacing (cubical voxels), using
the current anatomical interpolation mode

 After that, [View ULay Data Brick] will become available
➥ ls ⇒ to view newly created .BRIK files in the demo_tlrc/ directory:

anat+acpc.HEAD anat+acpc.BRIK
anat+tlrc.HEAD anat+tlrc.BRIK

• Class exmaple - Writing func (Overlay) datasets to disk:
 You can use [Define Datamode] ⇒ Write ⇒ [OLay] to write the current

functional dataset .HEAD and BRIK files into our demo_tlrc/ directory
 After that, [View OLay Data Brick] will become available

➥ ls ⇒ to view newly resampled func files in our demo_tlrc/ directory:
func_slim+acpc.HEAD func_slim+acpc.BRIK

func_slim+tlrc.HEAD func_slim+tlrc.BRIK

-83-

• Command line program adwarp can also be used to write out .BRIK files for
transformed datasets:

adwarp -apar anat+tlrc -dpar func+orig

 The result will be: func+tlrc.HEAD and func+tlrc.BRIK

• Why bother saving transformed datasets to disk anyway?
 Datasets without .BRIK files are of limited use:

➥ You can’t display 2D slice images from such a dataset
➥ You can’t use such datasets to graph time series, do volume rendering,

compute statistics, run any command line analysis program, run any
plugin…
➭ If you plan on doing any of the above to a dataset, it’s best to have

both a .HEAD and .BRIK files for that dataset

